新版FutureTask
2014-11-23
FutureTask在jdk1.7的时候重写过一次,早先的FutureTask是用AQS实现的,但考虑到在FutureTask取消竞争时仍然保留中断状态这点,新版的FutureTask不再使用AQS,而是直接用CAS来实现。
老板的FutureTask在AQS 系列中我做了详细的解析。
虽然没用AQS,不过AQS必备的state可是少不了:
private volatile int state;
private static final int NEW = 0;
private static final int COMPLETING = 1;
private static final int NORMAL = 2;
private static final int EXCEPTIONAL = 3;
private static final int CANCELLED = 4;
private static final int INTERRUPTING = 5;
private static final int INTERRUPTED = 6;
FutureTask共包括以上七种状态,由此而生了以下4种状态变迁:
- NEW -> COMPLETING -> NORMAL
- NEW -> COMPLETING -> EXCEPTIONAL
- NEW -> CANCELLED
- NEW -> INTERRUPTING -> INTERRUPTED
看来如果我能搞明白这四种状态变迁分别是如何做到的,那么我有理由说我对新版的FutureTask有了完整的认识。
1.正常退出
当FutureTask被构造时,state状态会首先被设置成NEW
public FutureTask(Callable<V> callable) {
if (callable == null)
throw new NullPointerException();
this.callable = callable;
this.state = NEW;
}
这之后会由某一个线程来执行FutureTask的run方法:
public void run() {
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return;
try {
Callable<V> c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
if (ran)
set(result);
}
} finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}
run方法首先会判断当前状态是否为NEW,然后通过cas设置runner也是运行线程为当前线程。
由于设置state的动作在cas设置当前线程之前,所以为了防止被其他线程改变state的状态值,之后需要double check。
state为NEW确认无误后执行Callable任务并获得返回值。这里通过ran这个变量来记录当前任务是否成功执行。
接下来在set方法中会用cas设置把state变更为COMPLETING,设置返回结果,变更状态为NORMAL,最后执行finishCompletion方法。这里的cas之所以没包括在自旋中,主要是因为只有执行线程才有可能调用,不存在线程争抢的可能。
private void finishCompletion() {
// assert state > COMPLETING;
for (WaitNode q; (q = waiters) != null;) {
if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
for (;;) {
Thread t = q.thread;
if (t != null) {
q.thread = null;
LockSupport.unpark(t);
}
WaitNode next = q.next;
if (next == null)
break;
q.next = null; // unlink to help gc
q = next;
}
break;
}
}
done();
callable = null; // to reduce footprint
}
在finishCompletion外层的使用for循环进行自旋,这个自旋用来保证可以通过cas把当前FutureTask对waiters的引用解除。之后把等待队列中所有的WaitNode引用的thread置空,最后线程唤醒。所有这些工作完毕后会执行用于扩展的done方法。
对于其他执行get方法的线程是如何加入到等待队列中的呢?
public V get() throws InterruptedException, ExecutionException {
int s = state;
if (s <= COMPLETING)
s = awaitDone(false, 0L);
return report(s);
}
这里检查如果当前状态表示FutureTask没有执行完,则进入等待完成的状态,直到被唤醒,最后返回任务执行结果。
来看看如何进入等待队列的:
private int awaitDone(boolean timed, long nanos)
throws InterruptedException {
final long deadline = timed ? System.nanoTime() + nanos : 0L;
WaitNode q = null;
boolean queued = false;
for (;;) {
if (Thread.interrupted()) {
removeWaiter(q);
throw new InterruptedException();
}
int s = state;
if (s > COMPLETING) {
if (q != null)
q.thread = null;
return s;
}
else if (s == COMPLETING) // cannot time out yet
Thread.yield();
else if (q == null)
q = new WaitNode();
else if (!queued)
queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
q.next = waiters, q);
else if (timed) {
nanos = deadline - System.nanoTime();
if (nanos <= 0L) {
removeWaiter(q);
return state;
}
LockSupport.parkNanos(this, nanos);
}
else
LockSupport.park(this);
}
}
这个方法总结成一句话就是,每走一步都要重新判断状态。
这里的状态包括:
- 是否中断
- 任务是否执行完成
- 任务是否即将完成
- 是否需要创建度列中的WaitNode
- 是否需要加入到队列中,放入队列中也很讲究,因为waiters只表示这个队列的队首,每次新创建的WaitNode会通过cas放入队列的队首。
最终线程被挂起。
这里需要特别注意的是,如果等待的线程是获得任务执行结果后正常被唤醒的,那么他不会主动把自己从队列中移除,而仅仅是把WaitNode引用的thread设置为null。如果所有等待在队列中的线程都正常获得结果,那么WaitNode虽然彼此之前有可能还持有对方的引用,但是不再与FutureTask有关联,会被回收掉。
而把WaitNode引用的thread置空是作为在等待中被中断的标志。在removeWaiter方法中遍历所有WaitNode时如果检查到有的WaitNode引用的thread为空,则把它剔除出队列。如果发现队列头的WaitNode引用的thread为空,则会通过cas设置队列头的位置。
2.异常退出
异常退出与正常退出唯一的区别在于不执行set方法设置返回值,而是执行setException方法设置异常信息,除此之外没有任何区别。
protected void setException(Throwable t) {
if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
outcome = t;
UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
finishCompletion();
}
}
3.任务取消&中断
这两个过程实际上都在cancel方法中完成。
public boolean cancel(boolean mayInterruptIfRunning) {
if (state != NEW)
return false;
if (mayInterruptIfRunning) {
if (!UNSAFE.compareAndSwapInt(this, stateOffset, NEW, INTERRUPTING))
return false;
Thread t = runner;
if (t != null)
t.interrupt();
UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED); // final state
}
else if (!UNSAFE.compareAndSwapInt(this, stateOffset, NEW, CANCELLED))
return false;
finishCompletion();
return true;
}
在run方法的finally有这么一段:
class FutureTask@run...
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
private void handlePossibleCancellationInterrupt(int s) {
// It is possible for our interrupter to stall before getting a
// chance to interrupt us. Let's spin-wait patiently.
if (s == INTERRUPTING)
while (state == INTERRUPTING)
Thread.yield(); // wait out pending interrupt
// assert state == INTERRUPTED;
// We want to clear any interrupt we may have received from
// cancel(true). However, it is permissible to use interrupts
// as an independent mechanism for a task to communicate with
// its caller, and there is no way to clear only the
// cancellation interrupt.
//
// Thread.interrupted();
}
从上面的代码可以看出,执行任务的线程如果发现当前正在中断进行中,则会自旋每次自旋检查当前任务是否中断完成。